A global test of hybrid ancestry from genome-scale data

Abstract: Methods based on the multi-species coalescent have been widely used in phylogenetic tree estimation using genome-scale DNA sequence data to understand the underlying evolutionary relationship between the sampled species. Evolutionary processes such as hybridization, which creates new species through interbreeding between two different species, necessitate inferring a species network instead of a species tree. A species tree is strictly bifurcating and thus fails to incorporate hybridization events which require an internal node of degree three. Hence, it is crucial to decide whether a tree or network analysis should be performed given a DNA sequence data set, a decision that is based on the presence of hybrid species in the sampled species. Although many methods have been proposed for hybridization detection, it is rare to find a technique that does so globally while considering a data generation mechanism that allows both hybridization and incomplete lineage sorting. In this paper, we consider hybridization and coalescence in a unified framework and propose a new test that can detect whether there are any hybrid species in a set of species of arbitrary size. Based on this global test of hybridization, one can decide whether a tree or network analysis is appropriate for a given data set.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A global test of hybrid ancestry from genome-scale data ; volume:23 ; number:1 ; year:2024 ; extent:18
Statistical applications in genetics and molecular biology ; 23, Heft 1 (2024) (gesamt 18)

Urheber
Haque, Md Rejuan
Kubatko, Laura

DOI
10.1515/sagmb-2022-0061
URN
urn:nbn:de:101:1-2024022013131576631185
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:55 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Haque, Md Rejuan
  • Kubatko, Laura

Ähnliche Objekte (12)