Fine Optimization of Colloidal Photonic Crystal Structural Color for Physically Unclonable Multiplex Encryption and Anti‐Counterfeiting

Abstract: Robust anti‐counterfeiting techniques aim for easy identification while remaining difficult to forge, especially for high‐value items such as currency and passports. However, many existing anti‐counterfeiting techniques rely on deterministic processes, resulting in loopholes for duplication and counterfeiting. Therefore, achieving high‐level encryption and easy authentication through conventional anti‐counterfeiting techniques has remained a significant challenge. To address this, this work proposes a solution that combined fluorescence and structural colors, creating a physically unclonable multiplex encryption system (PUMES). In this study, the physicochemical properties of colloidal photonic inks are systematically adjusted to construct a comprehensive printing phase diagram, revealing the printable region. Furthermore, the brightness and color saturation of inkjet‐printed colloidal photonic crystal structural colors are optimized by controlling the substrate's hydrophobicity, printed droplet volume, and the addition of noble metals. Finally, fluorescence is incorporated to build PUMES, including macroscopic fluorescence and structural color patterns, as well as microscopic physically unclonable fluorescence patterns. The PUMES with intrinsic randomness and high encoding capacity are authenticated by a deep learning algorithm, which proved to be reliable and efficient under various observation conditions. This approach can provide easy identification and formidable resistance against counterfeiting, making it highly promising for the next‐generation anti‐counterfeiting of currency and passports.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Fine Optimization of Colloidal Photonic Crystal Structural Color for Physically Unclonable Multiplex Encryption and Anti‐Counterfeiting ; day:04 ; month:04 ; year:2024 ; extent:13
Advanced science ; (04.04.2024) (gesamt 13)

Urheber
Gao, Yifan
Ge, Kongyu
Zhang, Zhen
Li, Zhan
Hu, Shaowei
Ji, Hongjun
Li, Mingyu
Feng, Huanhuan

DOI
10.1002/advs.202305876
URN
urn:nbn:de:101:1-2024040514244219893825
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:59 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Gao, Yifan
  • Ge, Kongyu
  • Zhang, Zhen
  • Li, Zhan
  • Hu, Shaowei
  • Ji, Hongjun
  • Li, Mingyu
  • Feng, Huanhuan

Ähnliche Objekte (12)