Chemoinformatics for corrosion science: Data‐driven modeling of corrosion inhibition by organic molecules

Abstract: This paper reviews the application of machine learning to the inhibition of corrosion by organic molecules. The methodologies considered include quantitative structure‐property relationships (QSPR) and related data‐driven approaches. The characteristic features of their key components are considered as applied to corrosion inhibition, including datasets, response properties, molecular descriptors, machine learning methods, and structure‐property models. It is shown that the most important factors determining their choice and application features are: (1) the small or very small size of datasets, (2) the mechanism of corrosion inhibition associated with the adsorption of inhibitor molecules on the metal surface, and (3) multifactorial conditioning and noisiness of response property. On this basis, the application of machine learning to the inhibition of corrosion of materials based on iron, aluminum, and magnesium is considered. The main trends in the development of QSPR and related data‐driven modeling of corrosion inhibition are discussed, the shortcomings and common errors are considered, and the prospects for their further development are outlined.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Chemoinformatics for corrosion science: Data‐driven modeling of corrosion inhibition by organic molecules ; day:15 ; month:10 ; year:2024 ; extent:22
Molecular informatics ; (15.10.2024) (gesamt 22)

Urheber
Baskin, Igor
Ein‐Eli, Yair

DOI
10.1002/minf.202400082
URN
urn:nbn:de:101:1-2410161405165.141690450178
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Baskin, Igor
  • Ein‐Eli, Yair

Ähnliche Objekte (12)