Arbeitspapier

Nonzero-sum submodular monotone-follower games: Existence and approximation of Nash equilibria

We consider a class of N-player stochastic games of multi-dimensional singular control, in which each player faces a minimization problem of monotone-follower type with submodular costs. We call these games monotone-follower games. In a not necessarily Markovian setting, we establish the existence of Nash equilibria. Moreover, we introduce a sequence of approximating games by restricting, for each n 2 N, the players' admissible strategies to the set of Lipschitz processes with Lipschitz constant bounded by n. We prove that, for each n 2 N, there exists a Nash equilibrium of the approximating game and that the sequence of Nash equilibria converges, in the Meyer-Zheng sense, to a weak (distributional) Nash equilibrium of the original game of singular control. As a byproduct, such a convergence also provides approximation results of the equilibrium values across the two classes of games. We finally show how our results can be employed to prove existence of open-loop Nash equilibria in an N-player stochastic differential game with singular controls, and we propose an algorithm to determine a Nash equilibrium for the monotone-follower game.

Language
Englisch

Bibliographic citation
Series: Center for Mathematical Economics Working Papers ; No. 605

Classification
Wirtschaft
Subject
nonzero-sum games
singular control
submodular games
Meyer-Zheng topology
maximum principle
Nash equilibrium
stochastic differential games
monotone-follower problem

Event
Geistige Schöpfung
(who)
Dianetti, Jodi
Ferrari, Giorgio
Event
Veröffentlichung
(who)
Bielefeld University, Center for Mathematical Economics (IMW)
(where)
Bielefeld
(when)
2019

Handle
URN
urn:nbn:de:0070-pub-29329948
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Dianetti, Jodi
  • Ferrari, Giorgio
  • Bielefeld University, Center for Mathematical Economics (IMW)

Time of origin

  • 2019

Other Objects (12)