Arbeitspapier
Nonzero-sum submodular monotone-follower games: Existence and approximation of Nash equilibria
We consider a class of N-player stochastic games of multi-dimensional singular control, in which each player faces a minimization problem of monotone-follower type with submodular costs. We call these games monotone-follower games. In a not necessarily Markovian setting, we establish the existence of Nash equilibria. Moreover, we introduce a sequence of approximating games by restricting, for each n 2 N, the players' admissible strategies to the set of Lipschitz processes with Lipschitz constant bounded by n. We prove that, for each n 2 N, there exists a Nash equilibrium of the approximating game and that the sequence of Nash equilibria converges, in the Meyer-Zheng sense, to a weak (distributional) Nash equilibrium of the original game of singular control. As a byproduct, such a convergence also provides approximation results of the equilibrium values across the two classes of games. We finally show how our results can be employed to prove existence of open-loop Nash equilibria in an N-player stochastic differential game with singular controls, and we propose an algorithm to determine a Nash equilibrium for the monotone-follower game.
- Sprache
-
Englisch
- Erschienen in
-
Series: Center for Mathematical Economics Working Papers ; No. 605
- Klassifikation
-
Wirtschaft
- Thema
-
nonzero-sum games
singular control
submodular games
Meyer-Zheng topology
maximum principle
Nash equilibrium
stochastic differential games
monotone-follower problem
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Dianetti, Jodi
Ferrari, Giorgio
- Ereignis
-
Veröffentlichung
- (wer)
-
Bielefeld University, Center for Mathematical Economics (IMW)
- (wo)
-
Bielefeld
- (wann)
-
2019
- Handle
- URN
-
urn:nbn:de:0070-pub-29329948
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Dianetti, Jodi
- Ferrari, Giorgio
- Bielefeld University, Center for Mathematical Economics (IMW)
Entstanden
- 2019