Arbeitspapier

Inference with large clustered datasets

Inference using large datasets is not nearly as straightforward as conventional econometric theory suggests when the disturbances are clustered, even with very small intra-cluster correlations. The information contained in such a dataset grows much more slowly with the sample size than it would if the observations were independent. Moreover, inferences become increasingly unreliable as the dataset gets larger. These assertions are based on an extensive series of estimations undertaken using a large dataset taken from the U.S. Current Population Survey.

Sprache
Englisch

Erschienen in
Series: Queen's Economics Department Working Paper ; No. 1365

Klassifikation
Wirtschaft
Hypothesis Testing: General
Statistical Simulation Methods: General
Methodological Issues: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Thema
cluster-robust inference
earnings equation
wild cluster bootstrap
CPS data
sample size
placebo laws

Ereignis
Geistige Schöpfung
(wer)
MacKinnon, James G.
Ereignis
Veröffentlichung
(wer)
Queen's University, Department of Economics
(wo)
Kingston (Ontario)
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • MacKinnon, James G.
  • Queen's University, Department of Economics

Entstanden

  • 2016

Ähnliche Objekte (12)