Arbeitspapier

Numerical implementation of the QuEST function

This paper deals with certain estimation problems involving the covariance matrix in large dimensions. Due to the breakdown of finite-dimensional asymptotic theory when the dimension is not negligible with respect to the sample size, it is necessary to resort to an alternative framework known as large-dimensional asymptotics. Recently, Ledoit and Wolf (2015) have proposed an estimator of the eigenvalues of the population covariance matrix that is consistent according to a mean-square criterion under large-dimensional asymptotics. It requires numerical inversion of a multivariate nonrandom function which they call the QuEST function. The present paper explains how to numerically implement the QuEST function in practice through a series of six successive steps. It also provides an algorithm to compute the Jacobian analytically, which is necessary for numerical inversion by a nonlinear optimizer. Monte Carlo simulations document the effectiveness of the code.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 215

Klassifikation
Wirtschaft
Estimation: General
Optimization Techniques; Programming Models; Dynamic Analysis
Econometric Software
Thema
Large-dimensional asymptotics
numerical optimization
random matrix theory
spectrum estimation

Ereignis
Geistige Schöpfung
(wer)
Ledoit, Olivier
Wolf, Michael
Ereignis
Veröffentlichung
(wer)
University of Zurich, Department of Economics
(wo)
Zurich
(wann)
2017

DOI
doi:10.5167/uzh-120492
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ledoit, Olivier
  • Wolf, Michael
  • University of Zurich, Department of Economics

Entstanden

  • 2017

Ähnliche Objekte (12)