Arbeitspapier
Numerical implementation of the QuEST function
This paper deals with certain estimation problems involving the covariance matrix in large dimensions. Due to the breakdown of finite-dimensional asymptotic theory when the dimension is not negligible with respect to the sample size, it is necessary to resort to an alternative framework known as large-dimensional asymptotics. Recently, Ledoit and Wolf (2015) have proposed an estimator of the eigenvalues of the population covariance matrix that is consistent according to a mean-square criterion under large-dimensional asymptotics. It requires numerical inversion of a multivariate nonrandom function which they call the QuEST function. The present paper explains how to numerically implement the QuEST function in practice through a series of six successive steps. It also provides an algorithm to compute the Jacobian analytically, which is necessary for numerical inversion by a nonlinear optimizer. Monte Carlo simulations document the effectiveness of the code.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 215
- Klassifikation
-
Wirtschaft
Estimation: General
Optimization Techniques; Programming Models; Dynamic Analysis
Econometric Software
- Thema
-
Large-dimensional asymptotics
numerical optimization
random matrix theory
spectrum estimation
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Ledoit, Olivier
Wolf, Michael
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Zurich, Department of Economics
- (wo)
-
Zurich
- (wann)
-
2017
- DOI
-
doi:10.5167/uzh-120492
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Ledoit, Olivier
- Wolf, Michael
- University of Zurich, Department of Economics
Entstanden
- 2017