Evaluation of reanalysis soil moisture products using cosmic ray neutron sensor observations across the globe
Abstract ∼ R R values varying from 0.46 to 0.66. The performance of reanalysis products differs greatly across regions, climate, land covers and topographic conditions. In general, all products tend to overestimate data in arid climates and underestimate data in humid regions as well as grassland. Most reanalysis products perform poorly in steep terrain. Relatively low temporal correlation and high bias are detected in some sites from the west of the UK, which might be associated with relatively low bulk density and high soil organic carbon. Overall, ERA5-Land, CRA40, CFSv2, SMAP L4 and GLEAM exhibit superior performance compared to MERRA2, GLDAS-Noah and JRA55. We recommend that ERA5-Land and CFSv2 could be used in humid climates, whereas SMAP L4 and CRA40 perform better in arid regions. SMAP L4 has good performance for cropland, while GLEAM is more effective in shrubland regions. Our findings also provide insights into directions for improvement of soil moisture products for product developers.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Evaluation of reanalysis soil moisture products using cosmic ray neutron sensor observations across the globe ; volume:28 ; number:9 ; year:2024 ; pages:1999-2022 ; extent:24
Hydrology and earth system sciences ; 28, Heft 9 (2024), 1999-2022 (gesamt 24)
- Urheber
-
Zheng, Yanchen
Coxon, Gemma
Woods, Ross
Power, Daniel
Rico-Ramirez, Miguel Angel
McJannet, David
Rosolem, Rafael
Li, Jianzhu
Feng, Ping
- DOI
-
10.5194/hess-28-1999-2024
- URN
-
urn:nbn:de:101:1-2405090423308.553890172358
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:59 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Zheng, Yanchen
- Coxon, Gemma
- Woods, Ross
- Power, Daniel
- Rico-Ramirez, Miguel Angel
- McJannet, David
- Rosolem, Rafael
- Li, Jianzhu
- Feng, Ping