Arbeitspapier
On the Optimal Policy for Deterministic and Exponential Polling Systems
In this paper, we consider deterministic (both fluid and discrete) polling systems with N queues with infinite buffers and we show how to compute the best polling sequence (minimizing the average total workload). With two queues, the best polling sequence is always periodic when the system is stable and forms a regular sequence. The fraction of time spent by the server in the first queue is highly non continuous in the parameters of the system (arrival rate and service rate) and shows a fractal behavior. Convexity properties are shown in Appendix as well as a generalization of the computations to the stochastic exponential case.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 05-066/4
- Klassifikation
-
Wirtschaft
Mathematical Methods; Programming Models; Mathematical and Simulation Modeling: General
Computational Techniques; Simulation Modeling
Miscellaneous Mathematical Tools
- Thema
-
Polling systems
regular sequences
multimodularity
optimal control
Scheduling-Verfahren
Warteschlangentheorie
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Gaujal, Bruno
Hordijk, Arie
van der Laan, Dinard
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2005
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Gaujal, Bruno
- Hordijk, Arie
- van der Laan, Dinard
- Tinbergen Institute
Entstanden
- 2005