Arbeitspapier

A patent search strategy based on machine learning for the emerging field of service robotics

Emerging technologies are in the core focus of supra-national innovation policies. These strongly rely on credible data bases for being effective and efficient. However, since emerging technologies are not yet part of any official industry, patent or trademark classification systems, delineating boundaries to measure their early development stage is a nontrivial task. This paper is aimed to present a methodology to automatically classify patents as concerning service robots. We introduce a synergy of a traditional technology identification process, namely keyword extraction and verification by an expert community, with a machine learning algorithm. The result is a novel possibility to allocate patents which (1) reduces expert bias regarding vested interests on lexical query methods, (2) avoids problems with citational approaches, and (3) facilitates evolutionary changes. Based upon a small core set of worldwide service robotics patent applications we derive apt n-gram frequency vectors and train a support vector machine (SVM), relying only on titles, abstracts and IPC categorization of each document. Altering the utilized Kernel functions and respective parameters we reach a recall level of 83% and precision level of 85%.

Sprache
Englisch

Erschienen in
Series: KIT Working Paper Series in Economics ; No. 71

Klassifikation
Wirtschaft
Mathematical Methods
Methodological Issues: General
Neural Networks and Related Topics
Thema
Service Robotics
Search Strategy
Patent Query
Data Mining
Machine Learning
Support Vector Machine

Ereignis
Geistige Schöpfung
(wer)
Kreuchauff, Florian
Korzinov, Vladimir
Ereignis
Veröffentlichung
(wer)
Karlsruher Institut für Technologie (KIT), Institut für Volkswirtschaftslehre (ECON)
(wo)
Karlsruhe
(wann)
2015

DOI
doi:10.5445/IR/1000049790
Handle
URN
urn:nbn:de:swb:90-497908
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kreuchauff, Florian
  • Korzinov, Vladimir
  • Karlsruher Institut für Technologie (KIT), Institut für Volkswirtschaftslehre (ECON)

Entstanden

  • 2015

Ähnliche Objekte (12)