Artikel

Short term prediction of sun coverage using optical flow with GoogLeNet

One of the challenges of PV power generation is solar intermittency from weather conditions. Solar irradiance prediction is therefore required to deal with this issue. Several prediction methods have been proposed based on whole sky image processing techniques. This paper presents a combination technique of image processing with a convolution neural network (CNN) based on GoogLeNet for raising trigger events before the sun cover happens 1 to 2 min in advance. The captured sky images are preprocessed and in the next step, we use Hough transform to find the sun position and use optical flow to track cloud movement. Finally, we use a CNN to generate trigger events in advance before the sun occlusion happens. The results of prediction stage show error percentage as low as 5.26% in a clear sky day.

Sprache
Englisch

Erschienen in
Journal: Energy Reports ; ISSN: 2352-4847 ; Volume: 6 ; Year: 2020 ; Issue: 2 ; Pages: 526-531 ; Amsterdam: Elsevier

Klassifikation
Wirtschaft
Thema
GoogLeNet
Ground base sky image
Photovoltaic power forecasting
Solar irradiance

Ereignis
Geistige Schöpfung
(wer)
Nithiphat Teerakawanich
Thanonchai Leelaruji
Achara Pichetjamroen
Ereignis
Veröffentlichung
(wer)
Elsevier
(wo)
Amsterdam
(wann)
2020

DOI
doi:10.1016/j.egyr.2019.11.114
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Nithiphat Teerakawanich
  • Thanonchai Leelaruji
  • Achara Pichetjamroen
  • Elsevier

Entstanden

  • 2020

Ähnliche Objekte (12)