Arbeitspapier

Nonparametric identification using instrumental variables: Sufficient conditions for completeness

This paper provides sufficient conditions for the nonparametric identification of the regression function m(.) in a regression model with an endogenous regressor x and an instrumental variable z. It has been shown that the identification of the regression function from the conditional expectation of the dependent variable on the instrument relies on the completeness of the distribution of the endogenous regressor conditional on the instrument, i.e., f(x/z). We provide sufficient conditions for the completeness of f(x/z) without imposing a specific functional form, such as the exponential family. We show that if the conditional density f(x/z) coincides with an existing complete density at a limit point in the support of z, then f(x/z) itself is complete, and therefore, the regression function m(.) is nonparametrically identified. We use this general result provide specific sufficient conditions for completeness in three different specifications of the relationship between the endogenous regressor x and the instrumental variable z.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP25/11

Classification
Wirtschaft
Subject
Regression
Nichtparametrisches Verfahren
Instrumentalvariablen-Schätzmethode
Modellierung
Theorie

Event
Geistige Schöpfung
(who)
Hu, Yingyao
Shiu, Ji-Liang
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2011

DOI
doi:10.1920/wp.cem.2011.2511
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Hu, Yingyao
  • Shiu, Ji-Liang
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2011

Other Objects (12)