Artikel

A longitudinal snalysis of the impact of distance driven on the probability of car accidents

Using telematics data, we study the relationship between claim frequency and distance driven through different models by observing smooth functions. We used Generalized Additive Models (GAM) for a Poisson distribution, and Generalized Additive Models for Location, Scale, and Shape (GAMLSS) that we generalize for panel count data. To correctly observe the relationship between distance driven and claim frequency, we show that a Poisson distribution with fixed effects should be used because it removes residual heterogeneity that was incorrectly captured by previous models based on GAM and GAMLSS theory. We show that an approximately linear relationship between distance driven and claim frequency can be derived. We argue that this approach can be used to compute the premium surcharge for additional kilometers the insured wants to drive, or as the basis to construct Pay-as-you-drive (PAYD) insurance for self-service vehicles. All models are illustrated using data from a major Canadian insurance company.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 3 ; Pages: 1-19 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
telematics
generalized additive models
generalized additive models for location
scale and shape
panel count data
random effects
fixed effects
distance driven

Ereignis
Geistige Schöpfung
(wer)
Boucher, Jean-Philippe
Turcotte, Roxane
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/risks8030091
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Boucher, Jean-Philippe
  • Turcotte, Roxane
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)