Versatile Mechanically Tunable Hydrogels for Therapeutic Delivery Applications

Abstract: Hydrogels provide a versatile platform for biomedical material fabrication that can be structurally and mechanically fine‐tuned to various tissues and applications. Applications of hydrogels in biomedicine range from highly dynamic injectable hydrogels that can flow through syringe needles and maintain or recover their structure after extrusion to solid‐like wound‐healing patches that need to be stretchable while providing a selective physical barrier. In this study, a toolbox is designed using thermo‐responsive poly (N‐isopropylacrylamide) (PNIPAM) polymeric matrices and nanocelluloses as reinforcing agent to obtain biocompatible hydrogels with altering mechanical properties, from a liquid injectable to a solid‐like elastic hydrogel. The liquid hydrogels possess low viscosity and shear‐thinning properties at 25 °C, which allows facile injection at room temperature, while they become viscoelastic gels at body temperature. In contrast, the covalently cross‐linked solid‐like hydrogels exhibit enhanced viscoelasticity. The liquid hydrogels are biocompatible and are able to delay the in vitro release and maintain the bioactivity of model drugs. The antimicrobial agent loaded solid‐like hydrogels are effective against typical wound‐associated pathogens. This work presents a simple method of tuning hydrogel mechanical strength to easily adapt to applications in different soft tissues and broaden the potential of renewable bio‐nanoparticles in hybrid biomaterials with controlled drug release capabilities.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Versatile Mechanically Tunable Hydrogels for Therapeutic Delivery Applications ; day:31 ; month:03 ; year:2024 ; extent:10
Advanced healthcare materials ; (31.03.2024) (gesamt 10)

Creator
Sun, Qiyao
Tao, Siyuan
Bovone, Giovanni
Han, Garam
Deshmukh, Dhananjay
Tibbitt, Mark W.
Ren, Qun
Bertsch, Pascal
Siqueira, Gilberto
Fischer, Peter Alfons

DOI
10.1002/adhm.202304287
URN
urn:nbn:de:101:1-2024040114080615058600
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:53 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Sun, Qiyao
  • Tao, Siyuan
  • Bovone, Giovanni
  • Han, Garam
  • Deshmukh, Dhananjay
  • Tibbitt, Mark W.
  • Ren, Qun
  • Bertsch, Pascal
  • Siqueira, Gilberto
  • Fischer, Peter Alfons

Other Objects (12)