Konferenzbeitrag

AI-based recognition of dangerous goods labels and metric package features

Purpose: Dangerous goods shipments require special labeling, which has to be checked manually every time a shipment is handed over in the supply chain. We describe an AI-based detection methodology to automate the recognition of dangerous goods labels and other shipment features (such as single piece volume detection). Methodology: We use five industry RGB cameras and three AZURE RGBD cameras to generate images from shipments passing through a gate. The images are processed based on the YOLO detector to identify and separate dangerous goods labels and barcodes. We trained YOLO for our particular problem with about 1.000 manually labeled and 50.000 artificial generated images. Findings: While dangerous goods labels detection was successfully validated in a laboratory environment and a warehouse, volume detection for single pieces consolidated on a pallet could be conceptualized. The system shows a high detection rate combined with fast processing, where the addition of computer-generated training images significantly improves the recognition rate for complex backgrounds. Originality: Parallel detection of multiple package features (volume, barcode, dangerous goods labels) of multiple pieces consolidated on a pallet is not available yet. Our solution processes a shipment faster and more accurately than existing single-piece solutions without restrictions to the material flow.

Sprache
Englisch

Erschienen in
hdl:10419/249608

Klassifikation
Management
Thema
Artificial Intelligence
Blockchain

Ereignis
Geistige Schöpfung
(wer)
Brylka, Robert
Bierwirth, Benjamin
Schwanecke, Ulrich
Ereignis
Veröffentlichung
(wer)
epubli GmbH
(wo)
Berlin
(wann)
2021

DOI
doi:10.15480/882.3959
Handle
URN
urn:nbn:de:gbv:830-882.0161713
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Brylka, Robert
  • Bierwirth, Benjamin
  • Schwanecke, Ulrich
  • epubli GmbH

Entstanden

  • 2021

Ähnliche Objekte (12)