Arbeitspapier

Improving oil price forecasts by sparse VAR methods

In this paper we document the results of a forecast evaluation exercise for the real world price of crude oil using VAR models estimated by sparse (regularization) estimators. These methods have the property to constrain single parameters to zero. We find that estimating VARs with three core variables (real price of oil, index of global real economic activity, change in global crude oil production) by the sparse methods is associated with substantial reductions of forecast errors. The transformation of the variables (taking logs or differences) is also crucial. Extending the VARs by further variables is not associated with additonal gains in forecast performance as is the application of impulse indicator saturation before the estimation.

Sprache
Englisch

Erschienen in
Series: Darmstadt Discussion Papers in Economics ; No. 237

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Energy Forecasting
Thema
oil price prediction
vector autoregression
regularization

Ereignis
Geistige Schöpfung
(wer)
Krüger, Jens
Ruths Sion, Sebastian
Ereignis
Veröffentlichung
(wer)
Technische Universität Darmstadt, Department of Law and Economics
(wo)
Darmstadt
(wann)
2019

DOI
doi:10.25534/tuprints-00009643
Handle
URN
urn:nbn:de:tuda-tuprints-96436
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Krüger, Jens
  • Ruths Sion, Sebastian
  • Technische Universität Darmstadt, Department of Law and Economics

Entstanden

  • 2019

Ähnliche Objekte (12)