Thrilling AI – A novel, signal-based digital biomarker for diagnosing canine heart diseases
Abstract: Auscultation methods enable non-invasive diagnosis of diseases, e.g. of the heart, based on heartbeat sounds. Regular, early examinations using machine learning techniques could help to detect diseases at an early stage to prevent serious health conditions and then provide optimal therapy through continuous monitoring. There is already a lot of work on human data using AI algorithms to detect patterns in signals or images. However, there is hardly no work on detecting heart murmurs with digital such as Myxomatous Mitral Valve Disease. In this paper, we present a canine auscultation project that aims to provide a tool to establish a baseline of classification parameters from audio signals that could be used to monitor canine health status by analyzing deviations from this baseline. In the future, data analysis could also lead to prediction and early detection of other diseases.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Thrilling AI – A novel, signal-based digital biomarker for diagnosing canine heart diseases ; volume:8 ; number:2 ; year:2022 ; pages:765-768 ; extent:4
Current directions in biomedical engineering ; 8, Heft 2 (2022), 765-768 (gesamt 4)
- Urheber
-
Bisgin, Pinar
Strube, Tom
Henze, Jasmin
Ljungvall, Ingrid
Häggström, Jens
Wess, Gerhard
Stadler, Julia
Schummer, Christoph
Meister, Sven
Howar, Falk Maria
- DOI
-
10.1515/cdbme-2022-1195
- URN
-
urn:nbn:de:101:1-2022090315254258377925
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:28 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Bisgin, Pinar
- Strube, Tom
- Henze, Jasmin
- Ljungvall, Ingrid
- Häggström, Jens
- Wess, Gerhard
- Stadler, Julia
- Schummer, Christoph
- Meister, Sven
- Howar, Falk Maria