Nonlinear continuous semimartingales
Abstract: In this paper we study a family of nonlinear (conditional) expectations that can be understood as a continuous semimartingale with uncertain local characteristics. Here, the differential characteristics are prescribed by a set-valued function that depends on time and path in a non-Markovian way. We provide a dynamic programming principle for the nonlinear expectation and we link the corresponding value function to a variational form of a nonlinear path-dependent partial differential equation. In particular, we establish conditions that allow us to identify the value function as the unique viscosity solution. Furthermore, we prove that the nonlinear expectation solves a nonlinear martingale problem, which confirms our interpretation as a nonlinear semimartingale
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Electronic journal of probability. - 28 (2023) , 1-40, ISSN: 1083-6489
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2024
- Urheber
- DOI
-
10.1214/23-ejp1037
- URN
-
urn:nbn:de:bsz:25-freidok-2536842
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 07:46 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Criens, David
- Niemann, Lars
- Universität
Entstanden
- 2024