Nonlinear continuous semimartingales
Abstract: In this paper we study a family of nonlinear (conditional) expectations that can be understood as a continuous semimartingale with uncertain local characteristics. Here, the differential characteristics are prescribed by a set-valued function that depends on time and path in a non-Markovian way. We provide a dynamic programming principle for the nonlinear expectation and we link the corresponding value function to a variational form of a nonlinear path-dependent partial differential equation. In particular, we establish conditions that allow us to identify the value function as the unique viscosity solution. Furthermore, we prove that the nonlinear expectation solves a nonlinear martingale problem, which confirms our interpretation as a nonlinear semimartingale
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Notes
-
Electronic journal of probability. - 28 (2023) , 1-40, ISSN: 1083-6489
- Event
-
Veröffentlichung
- (where)
-
Freiburg
- (who)
-
Universität
- (when)
-
2024
- Creator
- DOI
-
10.1214/23-ejp1037
- URN
-
urn:nbn:de:bsz:25-freidok-2536842
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
25.03.2025, 1:54 PM CET
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Criens, David
- Niemann, Lars
- Universität
Time of origin
- 2024