Arbeitspapier

Nonparametric estimation and inference under shape restrictions

Economic theory often provides shape restrictions on functions of interest in applications, such as monotonicity, convexity, non-increasing (non-decreasing) returns to scale, or the Slutsky inequality of consumer theory; but economic theory does not provide finite-dimensional parametric models. This motivates nonparametric estimation under shape restrictions. Nonparametric estimates are often very noisy. Shape restrictions stabilize nonparametric estimates without imposing arbitrary restrictions, such as additivity or a single-index structure, that may be inconsistent with economic theory and the data. This paper explains how to estimate and obtain an asymptotic uniform confidence band for a conditional mean function under possibly nonlinear shape restrictions, such as the Slutsky inequality. The results of Monte Carlo experiments illustrate the finite-sample performance of the method, and an empirical example illustrates its use in an application.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP67/15

Classification
Wirtschaft

Event
Geistige Schöpfung
(who)
Horowitz, Joel
Lee, Sokbae
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2015

DOI
doi:10.1920/wp.cem.2015.6715
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Horowitz, Joel
  • Lee, Sokbae
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2015

Other Objects (12)