Arbeitspapier

Machine learning, human experts, and the valuation of real assets

We study the accuracy and usefulness of automated (i.e., machine-generated) valuations for illiquid and heterogeneous real assets. We assemble a database of 1.1 million paintings auctioned between 2008 and 2015. We use a popular machine-learning technique - neural networks - to develop a pricing algorithm based on both non-visual and visual artwork characteristics. Our out-of-sample valuations predict auction prices dramatically better than valuations based on a standard hedonic pricing model. Moreover, they help explaining price levels and sale probabilities even after conditioning on auctioneers' pre-sale estimates. Machine learning is particularly helpful for assets that are associated with high price uncertainty. It can also correct human experts' systematic biases in expectations formation - and identify ex ante situations in which such biases are likely to arise.

Sprache
Englisch

Erschienen in
Series: CFS Working Paper Series ; No. 635

Klassifikation
Wirtschaft
Econometric Modeling: General
Auctions
Asset Pricing; Trading Volume; Bond Interest Rates
Cultural Economics: Economics of the Arts and Literature
Thema
asset valuation
auctions
experts
big data
machine learning
computer vision
art

Ereignis
Geistige Schöpfung
(wer)
Aubry, Mathieu
Kräussl, Roman
Manso, Gustavo
Spaenjers, Christophe
Ereignis
Veröffentlichung
(wer)
Goethe University Frankfurt, Center for Financial Studies (CFS)
(wo)
Frankfurt a. M.
(wann)
2019

Handle
URN
urn:nbn:de:hebis:30:3-515969
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Aubry, Mathieu
  • Kräussl, Roman
  • Manso, Gustavo
  • Spaenjers, Christophe
  • Goethe University Frankfurt, Center for Financial Studies (CFS)

Entstanden

  • 2019

Ähnliche Objekte (12)