PREDICTION OF FLOOD IN KARKHEH BASIN USING DATA-DRIVEN METHODS

Abstract. 2 and RMSE of 85.89% and 30.02 m3/s during testing periods, respectively. Similarly, LSSVM model performed better in predicting annual maximum streamflow in comparison with other machine learning models.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
PREDICTION OF FLOOD IN KARKHEH BASIN USING DATA-DRIVEN METHODS ; volume:X-4/W1-2022 ; year:2023 ; pages:349-354 ; extent:6
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; X-4/W1-2022 (2023), 349-354 (gesamt 6)

Creator
Kamali, S.
Saedi, F.
Asghari, K.

DOI
10.5194/isprs-annals-X-4-W1-2022-349-2023
URN
urn:nbn:de:101:1-2023011904463577273953
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:29 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Kamali, S.
  • Saedi, F.
  • Asghari, K.

Other Objects (12)