Konferenzbeitrag

Determinants of house price dynamics. What can we learn from search engine data?

There is a broad literature on determinants of house prices, which received increasing attention in the aftermath of the subprime crisis. Additional to macroeconomic standard variables, there might be other hard to measure or even unobservable factors influencing real estate price dynamics. Using quarterly data, we try to increase the informational input of conventional models and capture such effects by including Google search engine query information into a set of standard fundamental variables explaining house prices. We use the house price index (HPI) from Eurostat to perform fixed-effects regressions for a panel of 14 EU-countries comprising the years 2005-2013. We find that Google data as a single aggregate measure plays a prominent role in explaining house price developments and substantially improves the accuracy of forecasts.

Language
Englisch

Bibliographic citation
Series: Beiträge zur Jahrestagung des Vereins für Socialpolitik 2015: Ökonomische Entwicklung - Theorie und Politik - Session: Urban Economics I ; No. A15-V3

Classification
Wirtschaft
Urban, Rural, Regional, Real Estate, and Transportation Economics: Housing Demand
Housing Supply and Markets
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models

Event
Geistige Schöpfung
(who)
Oestmann, Marco
Bennöhr, Lars
Event
Veröffentlichung
(when)
2015

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Konferenzbeitrag

Associated

  • Oestmann, Marco
  • Bennöhr, Lars

Time of origin

  • 2015

Other Objects (12)