Drug Release from Polymer Thin Films and Gel Pellets: Insights from Programmed Microplate Electroanalysis

Abstract: Robotic electroanalysis in 24‐well microplates was used to determine Paracetamol (PCT) release from thin films of chitosan and two pH‐sensitive synthetic polymers as well as blends of the polymers with each other and with agarose. Square‐wave voltammograms were recorded automatically in a potential window of 0.35 V–0.85 V vs. Ag/AgCl/0.1 M KCl and their evaluation revealed time‐dependent PCT release into acidic and basic media. Comparison of the release profiles showed that pure chitosan layers released PCT quickly in a single‐phase process while liberation from synthetic polymer thin films was slower with a sigmoidal shape at pH 1.2 and pH 8.0 with a maximum release of PCT after approximately 150 and 140 min, respectively. The release profile from thicker agarose films was between those of the thin films. Agarose blended with chitosan or synthetic polymers formed films with biphasic release behavior. Chitosan linearized the initial section of the release profile in chitosan/polymer blends. The automated procedure for release testing offers the advantage of low‐cost, labor‐effective and error‐free data acquisition. The procedure has been validated as a useful microplate assay option for release profile testing.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Drug Release from Polymer Thin Films and Gel Pellets: Insights from Programmed Microplate Electroanalysis ; volume:85 ; number:4 ; year:2020 ; pages:627-633 ; extent:7
ChemPlusChem ; 85, Heft 4 (2020), 627-633 (gesamt 7)

Creator
Ruff, Adrian
Jaikaew, Wajee
Khunkaewla, Panida
Schuhmann, Wolfgang
Schulte, Albert

DOI
10.1002/cplu.202000129
URN
urn:nbn:de:101:1-2022070508262370887364
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:22 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)