Arbeitspapier

Random forest versus logit models: Which offers better early warning of fiscal stress?

This study seeks to answer whether it is possible to design an early warning system framework that can signal the risk of fiscal stress in the near future, and what shape such a system should take. To do so, multiple models based on econometric logit and the random forest models are designed and compared. Using a dataset of 20 annual frequency variables pertaining to 43 advanced and emerging countries during 1992-2018, the results confirm the possibility of obtaining an effective model, which correctly predicts 70-80% of fiscal stress events and tranquil periods. The random forest-based early warning model outperforms logit models. While the random forest model is commonly understood to provide lower interpretability than logit models do, this study employs tools that can be used to provide useful information for understanding what is behind the black-box. These tools can provide information on the most important explanatory variables and on the shape of the relationship between these variables and the outcome classification. Thus, the study contributes to the discussion on the usefulness of machine learning methods in economics.

ISBN
978-92-899-4051-1
Sprache
Englisch

Erschienen in
Series: ECB Working Paper ; No. 2408

Klassifikation
Wirtschaft
Econometric and Statistical Methods: Special Topics: General
Forecasting Models; Simulation Methods
National Debt; Debt Management; Sovereign Debt
Financial Crises
Thema
early warning system
interpretability of machine learning
predictive performance

Ereignis
Geistige Schöpfung
(wer)
Jarmulska, Barbara
Ereignis
Veröffentlichung
(wer)
European Central Bank (ECB)
(wo)
Frankfurt a. M.
(wann)
2020

DOI
doi:10.2866/214327
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jarmulska, Barbara
  • European Central Bank (ECB)

Entstanden

  • 2020

Ähnliche Objekte (12)