Ultrasonic-modified montmorillonite uniting ethylene glycol diglycidyl ether to reinforce protein-based composite films

Abstract: A novel biodegradable protein-based material (UMSPIE) that consists of natural polymer soy protein isolate (SPI), ultrasonic-modified montmorillonite (UMMT), and ethylene glycol diglycidyl ether (EGDE) was produced by solution casting. Fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM) were used to characterize the chemical structure and micro-morphologies of as-synthesized protein-based composite films. The results showed that the interlayer structure of MMT was destroyed by ultrasonic treatment, and the hydrogen bonding between SPI chains and the ultrasound-treated MMT plates was enhanced. The synergistic effect of UMMT and EGDE on SPI molecules made the network structure of the UMSPIE film denser. In addition, the mechanical and barrier properties of the as-synthesized films were explored. Compared with pure soy protein film, the tensile strength of the UMSPIE film has an increase of 266.82% (increasing from 4.4 to 16.14 MPa). From the above, the modified strategy of layered silicates filling combining crosslinking agents is considered as an effective method to improve the functional properties of bio-based polymer composites.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Ultrasonic-modified montmorillonite uniting ethylene glycol diglycidyl ether to reinforce protein-based composite films ; volume:21 ; number:1 ; year:2021 ; pages:433-442 ; extent:10
e-Polymers ; 21, Heft 1 (2021), 433-442 (gesamt 10)

Creator
He, Hua
Jia, Rui-jing
Dong, Kai-qiang
Huang, Jia-wen
Qin, Zhi-yong

DOI
10.1515/epoly-2021-0044
URN
urn:nbn:de:101:1-2412151606254.562811554439
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:23 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • He, Hua
  • Jia, Rui-jing
  • Dong, Kai-qiang
  • Huang, Jia-wen
  • Qin, Zhi-yong

Other Objects (12)