Artikel

A Bayesian time‐varying autoregressive model for improved short‐term and long‐term prediction

Motivated by the application to German interest rates, we propose a time‐varying autoregressive model for short‐term and long‐term prediction of time series that exhibit a temporary nonstationary behavior but are assumed to mean revert in the long run. We use a Bayesian formulation to incorporate prior assumptions on the mean reverting process in the model and thereby regularize predictions in the far future. We use MCMC‐based inference by deriving relevant full conditional distributions and employ a Metropolis‐Hastings within Gibbs sampler approach to sample from the posterior (predictive) distribution. In combining data‐driven short‐term predictions with long‐term distribution assumptions our model is competitive to the existing methods in the short horizon while yielding reasonable predictions in the long run. We apply our model to interest rate data and contrast the forecasting performance to that of a 2‐Additive‐Factor Gaussian model as well as to the predictions of a dynamic Nelson‐Siegel model.

Sprache
Englisch

Erschienen in
Journal: Journal of Forecasting ; ISSN: 1099-131X ; Volume: 41 ; Year: 2021 ; Issue: 1 ; Pages: 181-200

Thema
Bayesian time‐varying autoregressive models
Gibbs sampler
interest rate models
long run regularization
MCMC metropolis‐Hastings

Ereignis
Geistige Schöpfung
(wer)
Berninger, Christoph
Stöcker, Almond
Rügamer, David
Ereignis
Veröffentlichung
(wer)
Wiley
(wo)
Hoboken, NJ
(wann)
2021

DOI
doi:10.1002/for.2802
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Berninger, Christoph
  • Stöcker, Almond
  • Rügamer, David
  • Wiley

Entstanden

  • 2021

Ähnliche Objekte (12)