Electro–Chemo–Mechanical Failure of Solid Electrolytes Induced by Growth of Internal Lithium Filaments

Abstract: Growth of lithium (Li) filaments within solid electrolytes, leading to mechanical degradation of the electrolyte and even short circuit of the cell under high current density, is a great barrier to commercialization of solid‐state Li‐metal batteries. Understanding of this electro–chemo–mechanical phenomenon is hindered by the challenge of tracking local fields inside the solid electrolyte. Here, a multiphysics simulation aiming to investigate evolution of the mechanical failure of the solid electrolyte induced by the internal growth of Li is reported. Visualization of local stress, damage, and crack propagation within the solid electrolyte enables examination of factors dominating the degradation process, including the geometry, number, and size of Li filaments and voids in the electrolyte. Relative damage induced by locally high stress is found to preferentially occur in the region of the electrolyte/Li interface having great fluctuations. A high number density of Li filaments or voids triggers integration of damage and crack networks by enhanced propagation. This model is built on coupling of mechanical and electrochemical processes for internal plating of Li, revealing evolution of multiphysical fields that can barely be captured by the state‐of‐the‐art experimental techniques. Understanding mechanical degradation of solid electrolytes with the presence of Li filaments paves the way to design advanced solid electrolytes for future solid‐state Li‐metal batteries.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Electro–Chemo–Mechanical Failure of Solid Electrolytes Induced by Growth of Internal Lithium Filaments ; day:31 ; month:10 ; year:2022 ; extent:11
Advanced materials ; (31.10.2022) (gesamt 11)

Creator
Xu, Xieyu
Liu, Yangyang
Kapitanova, Olesya O.
Song, Zhongxiao
Sun, Jun
Xiong, Shizhao

DOI
10.1002/adma.202207232
URN
urn:nbn:de:101:1-2022103114355382111938
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:29 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Xu, Xieyu
  • Liu, Yangyang
  • Kapitanova, Olesya O.
  • Song, Zhongxiao
  • Sun, Jun
  • Xiong, Shizhao

Other Objects (12)