High‐Speed Transmission Control in Gate‐Tunable Metasurfaces Using Hybrid Plasmonic Waveguide Mode

Abstract: Dynamic control of light based on gate‐tunable metasurfaces has revolutionized traditional optoelectronic devices due to its unprecedented compactness and versatile functionalities. However, these devices are typically based on metal‐insulator‐metal geometries that enable field‐effect modulation of only reflected light. Transmittance modulation techniques based on dielectric metasurfaces, despite their large modulation depth, have a disadvantage of low modulation speed due to high resistance of dielectric materials. Here, a high‐efficiency transmittance modulator that enables high switching speed, as well as large modulation depth, is demonstrated using indium‐tin‐oxide‐based metasurfaces. To realize these devices, the hybrid plasmonic waveguide mode is used which allows electromagnetic energy storage within the nanoscale permittivity‐tunable region between metal and high‐refractive dielectric layers. Experimental measurements reveal a change in the transmittance (≈33%) by applying 6 V gate bias, and a fast modulation speed (≈826 kHz of 3 dB cut‐off frequency). This work provides a promising avenue for developing ultracompact optical components such as dynamic holograms, lenses with active focal lengths, or spatial light modulators.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
High‐Speed Transmission Control in Gate‐Tunable Metasurfaces Using Hybrid Plasmonic Waveguide Mode ; volume:8 ; number:22 ; year:2020 ; extent:7
Advanced optical materials ; 8, Heft 22 (2020) (gesamt 7)

Creator
Lee, Yohan
Yun, Jeongse
Kim, Sun‐Je
Seo, Minjee
In, Sungjun
Jeong, Hee‐Dong
Lee, Seung‐Yeol
Park, Namkyoo
Chung, Taek Dong
Lee, Byoungho

DOI
10.1002/adom.202001256
URN
urn:nbn:de:101:1-2022062412595101761479
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:36 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Lee, Yohan
  • Yun, Jeongse
  • Kim, Sun‐Je
  • Seo, Minjee
  • In, Sungjun
  • Jeong, Hee‐Dong
  • Lee, Seung‐Yeol
  • Park, Namkyoo
  • Chung, Taek Dong
  • Lee, Byoungho

Other Objects (12)