Artikel

Time series forecasting using a moving average model for extrapolation of number of tourist

Time series is a collection of observations made at regular time intervals and its analysis refers to problems in correlations among successive observations. Time series analysis is applied in all areas of statistics but some of the most important include macroeconomic and financial time series. In this paper we are testing forecasting capacity of the time series analysis to predict tourists' trends and indicators. We found evidence that the time series models provide accurate extrapolation of the number of guests, quarterly for one year in advance. This is important for appropriate planning for all stakeholders in the tourist sector. Research results confirm that moving average model for time series data provide accurate forecasting the number of tourist guests for the next year.

Sprache
Englisch

Erschienen in
Journal: UTMS Journal of Economics ; ISSN: 1857-6982 ; Volume: 9 ; Year: 2018 ; Issue: 2 ; Pages: 121-132

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Thema
seasonality
trend
regression
forecasting
centered moving average

Ereignis
Geistige Schöpfung
(wer)
Ivanovski, Zoran
Milenkovski, Ace
Narasanov, Zoran
Ereignis
Veröffentlichung
(wer)
University of Tourism and Management
(wo)
Skopje
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Ivanovski, Zoran
  • Milenkovski, Ace
  • Narasanov, Zoran
  • University of Tourism and Management

Entstanden

  • 2018

Ähnliche Objekte (12)