Arbeitspapier

A Class of Solvable Optimal Stopping Problems of Spectrally Negative Jump Diffusions

We consider the optimal stopping of a class of spectrally negative jump diffusions. We state a set of conditions under which the value is shown to have a representation in terms of an ordinary nonlinear programming problem. We establish a connection between the considered problem and a stopping problem of an associated continuous diffusion process and demonstrate how this connection may be applied for characterizing the stopping policy and its value. We also establish a set of typically satisfied conditions under which increased volatility as well as higher jump-intensity decelerates rational exercise by increasing the value and expanding the continuation region.

Sprache
Englisch

Erschienen in
Series: Discussion paper ; No. 9

Klassifikation
Wirtschaft
Optimization Techniques; Programming Models; Dynamic Analysis
Portfolio Choice; Investment Decisions
Asset Pricing; Trading Volume; Bond Interest Rates
Thema
jump diffusions
optimal stopping
nonlinear programming
perpetual American options

Ereignis
Geistige Schöpfung
(wer)
Alvarez, Luis H. R.
Rakkolainen, Teppo A.
Ereignis
Veröffentlichung
(wer)
Aboa Centre for Economics (ACE)
(wo)
Turku
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Alvarez, Luis H. R.
  • Rakkolainen, Teppo A.
  • Aboa Centre for Economics (ACE)

Entstanden

  • 2006

Ähnliche Objekte (12)