Flutter investigation and deep learning prediction of FG composite wing reinforced with carbon nanotube

Abstract: The flutter of a composite wing reinforced with functionally graded carbon nanotubes (CNTs) has been investigated. A rectangular plate models a supersonic wing with cantilever boundary conditions. To determine displacement fields of a moderately thick plate, shear deformation theory is used. Using the Hamilton principle, a first-order piston theory was used to simulate supersonic airflow. This study examines four types of CNT thickness. Also, four different CNT distribution patterns are investigated. In a two-layer asymmetric composite, the effects of patch mass, mass distribution, fiber orientation angle, and distribution of CNTs were examined. Moreover, the results are compared and verified with other studies. A greater mass ratio led to a smaller flutter boundary, while a longer added mass increased the flutter boundary. A variation in the distribution pattern in CNT fiber orientation results in a distinct behavior of the flutter boundary for asymmetric composites with increasing orientation angles. The artificial neural network is utilized to predict the damping ratio, and the results showed great accuracy compared to the study results. Hyperparameter tuning is employed for better optimizing the predictive models.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Flutter investigation and deep learning prediction of FG composite wing reinforced with carbon nanotube ; volume:11 ; number:1 ; year:2024 ; extent:12
Curved and layered structures ; 11, Heft 1 (2024) (gesamt 12)

Urheber
Mohammed, Aseel J.
Kadhom, Hatam K.

DOI
10.1515/cls-2022-0218
URN
urn:nbn:de:101:1-2024010313112823343481
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:29 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Mohammed, Aseel J.
  • Kadhom, Hatam K.

Ähnliche Objekte (12)