Arbeitspapier

Relating principal component analysis on merged data sets to a regression approach

A method for calculating a consensus of several data matrices on the same samples using a PCA is based on a mathematical background. We propose a model to describe the data which might be obtained e. g. by means of a free choice profiling or a fixed vocabulary in a sensory profiling framework. A regression approach for this model leads to a Principal Component Analysis on Merged Data sets (PCAMD), which provides a simple method to calculate a consensus from the data. Since we use less restrictions on the variables under investigation, the model is claimed to be more general than the model induced by GPA respectively STATIS, which are widely accepted methods to analyse this kind of data. Furthermore, the PCAMD provides also additional opportunities to compare and interpret assessor performances with respect to the variables of the calculated consensus. An example from a sensory profiling study of cider is provided to illustrate these possibilities.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2001,47

Subject
principal component analysis
regression analysis
merged data sets
sensory profiling
assessor performance

Event
Geistige Schöpfung
(who)
Meyners, Michael
Qannari, El Mostafa
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2001

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Meyners, Michael
  • Qannari, El Mostafa
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2001

Other Objects (12)