Arbeitspapier

Approximating convex bodies by Cephoids

We consider a class of comprehensive compact convex polyhedra called Cephoids. A Cephoid is a Minkowski sum of finitely many standardized simplices ("deGua Simplices''). The Pareto surface of Cephoids consists of certain translates of simplices, algebraic sums of subsimplices etc. The peculiar shape of such a Pareto surface raises the question as to how far results for Cephoids can be carried over to general comprehensive compact convex bodies by approximation. We prove that to any comprehensive compact convex body Γ , given a set of finitely many points on its surface, there is a Cephoid Π that coincides with Γ in exactly these preset points. As a consequence, Cephoids are dense within the set of comprehensive compact convex bodies with respect to the Hausdorff metric. Cephoids appear in Operations Research (Optimization |10|, |3|), in Mathematical Economics (Free Trade theory |7|, |8|), and in Cooperative Game Theory (the Maschler--Perles solution |6|). More generally in the context of Cooperative Game Theory, the notion of a Cephoid serves to construct "solutions'' or "values'' for bargaining problems and non--side payment games (|9|). Therefore, the results of this paper open up an avenue for the extension of solution concepts from Cephoids to general compact convex bodies.

Sprache
Englisch

Erschienen in
Series: Center for Mathematical Economics Working Papers ; No. 640

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Rosenmüller, Joachim
Ereignis
Veröffentlichung
(wer)
Bielefeld University, Center for Mathematical Economics (IMW)
(wo)
Bielefeld
(wann)
2020

Handle
URN
urn:nbn:de:0070-pub-29465297
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Rosenmüller, Joachim
  • Bielefeld University, Center for Mathematical Economics (IMW)

Entstanden

  • 2020

Ähnliche Objekte (12)