Arbeitspapier
Industry Interdependency Dynamics in a Network Context
This paper contributes to model the industry interconnecting structure in a network context. General predictive model (Rapach et al. 2016) is extended to quantile LASSO regression so as to incorporate tail risks in the construction of industry interdependency networks. Empirical results show a denser network with heterogeneous central industries in tail cases. Network dynamics demonstrate the variety of interdependency across time. Lower tail interdependency structure gives the most accurate out-of-sample forecast of portfolio returns and network centrality-based trading strategies seem to outperform market portfolios, leading to the possible 'too central to fail' argument.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 649 Discussion Paper ; No. 2017-012
- Classification
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Large Data Sets: Modeling and Analysis
Financial Econometrics
Portfolio Choice; Investment Decisions
Financial Forecasting and Simulation
- Subject
-
dynamic network
interdependency
general predictive model
quantile LASSO
connectedness
centrality
prediction accuracy
network-based trading strategy
- Event
-
Geistige Schöpfung
- (who)
-
Qian, Ya
Härdle, Wolfgang Karl
Chen, Cathy Yi-Hsuan
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (where)
-
Berlin
- (when)
-
2017
- Handle
- Last update
-
10.03.2025, 11:45 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Qian, Ya
- Härdle, Wolfgang Karl
- Chen, Cathy Yi-Hsuan
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Time of origin
- 2017