Pell-Lucas polynomials for numerical treatment of the nonlinear fractional-order Duffing equation
Abstract: The nonlinear fractional-order cubic-quintic-heptic Duffing problem will be solved through a new numerical approximation technique. The suggested method is based on the Pell-Lucas polynomials’ operational matrix in the fractional and integer orders. The studied problem will be transformed into a nonlinear system of algebraic equations. The numerical expansion containing unknown coefficients will be obtained numerically via applying Newton’s iteration method to the claimed system. Convergence analysis and error estimates for the introduced process will be discussed. Numerical applications will be given to illustrate the applicability and accuracy of the proposed method.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Pell-Lucas polynomials for numerical treatment of the nonlinear fractional-order Duffing equation ; volume:56 ; number:1 ; year:2023 ; extent:17
Demonstratio mathematica ; 56, Heft 1 (2023) (gesamt 17)
- Creator
-
El-Sayed, Adel Abd Elaziz
- DOI
-
10.1515/dema-2022-0220
- URN
-
urn:nbn:de:101:1-2023062214112830527655
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:49 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- El-Sayed, Adel Abd Elaziz