Pell-Lucas polynomials for numerical treatment of the nonlinear fractional-order Duffing equation

Abstract: The nonlinear fractional-order cubic-quintic-heptic Duffing problem will be solved through a new numerical approximation technique. The suggested method is based on the Pell-Lucas polynomials’ operational matrix in the fractional and integer orders. The studied problem will be transformed into a nonlinear system of algebraic equations. The numerical expansion containing unknown coefficients will be obtained numerically via applying Newton’s iteration method to the claimed system. Convergence analysis and error estimates for the introduced process will be discussed. Numerical applications will be given to illustrate the applicability and accuracy of the proposed method.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Pell-Lucas polynomials for numerical treatment of the nonlinear fractional-order Duffing equation ; volume:56 ; number:1 ; year:2023 ; extent:17
Demonstratio mathematica ; 56, Heft 1 (2023) (gesamt 17)

Creator
El-Sayed, Adel Abd Elaziz

DOI
10.1515/dema-2022-0220
URN
urn:nbn:de:101:1-2023062214112830527655
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:49 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • El-Sayed, Adel Abd Elaziz

Other Objects (12)