Numerical solution of two-dimensional fractional differential equations using Laplace transform with residual power series method
Abstract: One of the efficient and reliable methods for resolving fractional order linear as well as non-linear differential equations is the Laplace transform with residual power series method. This approach is used in the current research to obtain the numerical solutions of the two-dimensional fractional differential equations, namely, the temporal fractional order diffusion equation and the fractional biological population equation. The unknown coefficients of the series solutions to these equations are determined using the proposed approach. The difference between exact and analytical-numerical solutions is presented for these equations in the form of errors. The advantage of the suggested method over alternative approaches is that it requires less computation to solve these two-dimensional differential equations of time-fractional order.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Numerical solution of two-dimensional fractional differential equations using Laplace transform with residual power series method ; volume:13 ; number:1 ; year:2024 ; extent:15
Nonlinear engineering ; 13, Heft 1 (2024) (gesamt 15)
- Urheber
-
Pant, Rajendra
Arora, Geeta
Singh, Brajesh Kumar
Emadifar, Homan
- DOI
-
10.1515/nleng-2022-0347
- URN
-
urn:nbn:de:101:1-2024030613071700692704
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:48 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Pant, Rajendra
- Arora, Geeta
- Singh, Brajesh Kumar
- Emadifar, Homan