Arbeitspapier
Polar sets of anisotropic Gaussian random fields
This paper studies polar sets of anisotropic Gaussian random fields, i.e. sets which a Gaussian random field does not hit almost surely. The main assumptions are that the eigenvalues of the covariance matrix are bounded from below and that the canonical metric associated with the Gaussian random field is dominated by an anisotropic metric. We deduce an upper bound for the hitting probabilities and conclude that sets with small Hausdorff dimension are polar. Moreover, the results allow for a translation of the Gaussian random field by a random field, that is independent of the Gaussian random field and whose sample functions are of bounded Hölder norm.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 649 Discussion Paper ; No. 2009,058
- Klassifikation
-
Wirtschaft
Contingent Pricing; Futures Pricing; option pricing
Semiparametric and Nonparametric Methods: General
- Thema
-
Anisotropic Gaussian fields
Hitting probabilities
Polar sets
Hausdorff dimension
European option
Jump diffusion
Calibration
Analysis
Stochastischer Prozess
Optionspreistheorie
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Söhl, Jakob
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (wo)
-
Berlin
- (wann)
-
2009
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Söhl, Jakob
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Entstanden
- 2009