Artikel

On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm

Recently, Kronqvist et al. (J Global Optim 64(2):249–272, 2016) rediscovered the supporting hyperplane algorithm of Veinott (Oper Res 15(1):147–152, 1967) and demonstrated its computational benefits for solving convex mixed integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley’s cutting plane algorithm (J Soc Ind Appl Math 8(4):703–712, 1960) applied to a particular reformulation of the problem. As a result, we extend the applicability of the supporting hyperplane algorithm to convex problems represented by a class of general, not necessarily convex nor differentiable, functions.

Language
Englisch

Bibliographic citation
Journal: Journal of Global Optimization ; ISSN: 1573-2916 ; Volume: 78 ; Year: 2020 ; Issue: 1 ; Pages: 161-179 ; New York, NY: Springer US

Classification
Mathematik
Subject
Convex MINLP
Cutting plane algorithms
Supporting hyperplane algorithm
Nonsmooth Optimization

Event
Geistige Schöpfung
(who)
Serrano, Felipe
Schwarz, Robert
Gleixner, Ambros
Event
Veröffentlichung
(who)
Springer US
(where)
New York, NY
(when)
2020

DOI
doi:10.1007/s10898-020-00906-y
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Serrano, Felipe
  • Schwarz, Robert
  • Gleixner, Ambros
  • Springer US

Time of origin

  • 2020

Other Objects (12)