Differentiability and ApproximateDifferentiability for Intrinsic LipschitzFunctions in Carnot Groups and a RademacherTheorem
Abstract: A Carnot group G is a connected, simply connected, nilpotent Lie group with stratified Lie algebra.We study intrinsic Lipschitz graphs and intrinsic differentiable graphs within Carnot groups. Both seem to bethe natural analogues inside Carnot groups of the corresponding Euclidean notions. Here ‘natural’ is meantto stress that the intrinsic notions depend only on the structure of the algebra of G. We prove that one codimensionalintrinsic Lipschitz graphs are sets with locally finite G-perimeter. From this a Rademacher’s typetheorem for one codimensional graphs in a general class of groups is proved.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Differentiability and ApproximateDifferentiability for Intrinsic LipschitzFunctions in Carnot Groups and a RademacherTheorem ; volume:2 ; number:1 ; year:2014 ; extent:24
Analysis and geometry in metric spaces ; 2, Heft 1 (2014) (gesamt 24)
- Urheber
-
Franchi, Bruno
Marchi, Marco
Serapioni, Raul Paolo
- DOI
-
10.2478/agms-2014-0010
- URN
-
urn:nbn:de:101:1-2024041116302817468997
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:53 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Franchi, Bruno
- Marchi, Marco
- Serapioni, Raul Paolo