Arbeitspapier

Give me strong moments and time: Combining GMM and SMM to estimate long-run risk asset pricing

The long-run consumption risk (LRR) model is a promising approach to resolve prominent asset pricing puzzles. The simulated method of moments (SMM) provides a natural framework to estimate its deep parameters, but caveats concern model solubility and weak identification. We propose a twostep estimation strategy that combines GMM and SMM, and for which we elicit informative macroeconomic and financial moment matches from the LRR model structure. In particular, we exploit the persistent serial correlation of consumption and dividend growth and the equilibrium conditions for market return and risk-free rate, as well as the model-implied predictability of the risk-free rate. We match analytical moments when possible and simulated moments when necessary and determine the crucial factors required for both identification and reasonable estimation precision. A simulation study|the first in the context of long-run risk modeling|delineates the pitfalls associated with SMM estimation of a non-linear dynamic asset pricing model. Our study provides a blueprint for successful estimation of the LRR model.

Sprache
Englisch

Erschienen in
Series: CFR Working Paper ; No. 14-05

Klassifikation
Wirtschaft
Financial Econometrics
General Financial Markets: General (includes Measurement and Data)
Asset Pricing; Trading Volume; Bond Interest Rates
Thema
asset pricing
long-run risk
simulated method of moments

Ereignis
Geistige Schöpfung
(wer)
Grammig, Joachim
Schaub, Eva-Maria
Ereignis
Veröffentlichung
(wer)
University of Cologne, Centre for Financial Research (CFR)
(wo)
Cologne
(wann)
2014

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Grammig, Joachim
  • Schaub, Eva-Maria
  • University of Cologne, Centre for Financial Research (CFR)

Entstanden

  • 2014

Ähnliche Objekte (12)