Arbeitspapier

Quantile-based inflation risk models

This paper proposes a new approach to extract quantile-based inflation risk measures using Quantile Autoregressive Distributed Lag Mixed-Frequency Data Sampling (QADL-MIDAS) regression models. We compare our models to a standard Quantile Auto-Regression (QAR) model and show that it delivers better quantile forecasts at several forecasting horizons. We use the QADL-MIDAS model to construct inflation risk measures proxying for uncertainty, third-moment dynamics and the risk of extreme inflation realizations. We find that these risk measures are linked to the future evolution of inflation and changes in the effective federal funds rate.

Sprache
Englisch

Erschienen in
Series: NBB Working Paper ; No. 349

Klassifikation
Wirtschaft
Forecasting Models; Simulation Methods
Quantitative Policy Modeling
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
regression quantiles
inflation risk
quantile forecasting

Ereignis
Geistige Schöpfung
(wer)
Ghysels, Eric
Iania, Leonardo
Striaukas, Jonas
Ereignis
Veröffentlichung
(wer)
National Bank of Belgium
(wo)
Brussels
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ghysels, Eric
  • Iania, Leonardo
  • Striaukas, Jonas
  • National Bank of Belgium

Entstanden

  • 2018

Ähnliche Objekte (12)