Arbeitspapier
Convergence of the risk for nonparametric IV quantile regression and nonparametric IV regression with full independence
In econometrics some nonparametric instrumental regression models and nonparametric demand models with endogeneity lead to nonlinear integral equations with unknown integral kernels. We prove convergence rates of the risk for the iteratively regularized Newton method applied to these problems. Compared to related results we relay on a weaker non-linearity condition and have stronger convergence results. We demonstrate by numerical simulations for a nonparametric IV regression problem with continuous instrument and regressor that the method produces better results than the standard method.
- Sprache
-
Englisch
- Erschienen in
-
Series: Discussion Papers ; No. 192
- Klassifikation
-
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Multiple or Simultaneous Equation Models: Instrumental Variables (IV) Estimation
- Thema
-
nonparametric regression
instrumental variables
nonlinear inverse problems
iterative regularization
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Dunker, Fabian
- Ereignis
-
Veröffentlichung
- (wer)
-
Georg-August-Universität Göttingen, Courant Research Centre - Poverty, Equity and Growth (CRC-PEG)
- (wo)
-
Göttingen
- (wann)
-
2015
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Dunker, Fabian
- Georg-August-Universität Göttingen, Courant Research Centre - Poverty, Equity and Growth (CRC-PEG)
Entstanden
- 2015