Decomposition of halogenated molybdenum sulfide dianions [Mo3S7X6]2– (X : = Cl, Br, I)

Abstract: Molybdenum sulfides are considered a promising and inexpensive alternative to platinum as a catalyst for the hydrogen evolution reaction. In this study, we perform collision-induced dissociation experiments in the gas phase with the halogenated molybdenum sulfides [Mo3S7Cl6]2–, [Mo3S7Br6]2–, and [Mo3S7I6]2–. We show that the first fragmentation step for all three dianions is charge separation via loss of a halide ion. As a second step, further halogen loss competes with the dissociation of a disulfur molecule, whereas the former becomes energetically more favorable and the latter becomes less favorable from chlorine via bromine to iodine. We show that the leaving S2 group is composed of sulfur atoms from two bridging groups. These decomposition pathways differ drastically from the pure [Mo3S13]2– clusters. The obtained insight into preferred dissociation pathways of molybdenum sulfides illustrate possible reaction pathways during the activation of these substances in a catalytic environment

Alternative title
Cl, Br, I)
Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Journal of the American Society for Mass Spectrometry. - 33, 9 (2022) , 1753-1760, ISSN: 1879-1123

Classification
Chemie

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2022
Creator
Contributor
Professur für Bioanorganische Chemie

DOI
10.1021/jasms.2c00162
URN
urn:nbn:de:bsz:25-freidok-2294082
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:32 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2022

Other Objects (12)