Arbeitspapier

Finite Mixture Models for Linked Survey and Administrative Data: Estimation and Post-estimation

Researchers use finite mixture models to analyze linked survey and administrative data on labour earnings (or similar variables), taking account of various types of measurement error in each data source. Different combinations of error-ridden and/or error-free observations characterize latent classes. Latent class probabilities depend on the probabilities of the different types of error. We introduce a set of Stata commands to fit a general class of finite mixture models to fit to linked survey-administrative data We also provide post-estimation commands for assessment of reliability, marginal effects, data simulation, and prediction of hybrid earnings variables that combine information from both data sources.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 14404

Klassifikation
Wirtschaft
Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Survey Methods; Sampling Methods
Personal Income, Wealth, and Their Distributions
Thema
linked survey and administrative data
measurement error
finite mixture models

Ereignis
Geistige Schöpfung
(wer)
Jenkins, Stephen P.
Rios-Avila, Fernando
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jenkins, Stephen P.
  • Rios-Avila, Fernando
  • Institute of Labor Economics (IZA)

Entstanden

  • 2021

Ähnliche Objekte (12)