Arbeitspapier
Sample selection models without exclusion restrictions: Parameter heterogeneity and partial identification
This paper studies semiparametric versions of the classical sample selection model (Heckman (1976, 1979)) without exclusion restrictions. We extend the analysis in Honor'e and Hu (2020) by allowing for parameter heterogeneity and derive implications of this model. We also consider models that allow for heteroskedasticity and briefly discuss other extensions. The key ideas are illustrated in a simple wage regression for females. We find that the derived implications of a semiparametric version of Heckman's classical sample selection model are consistent with the data for women with no college education, but strongly rejected for women with a college degree or more.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. WP 2022-33
- Klassifikation
-
Wirtschaft
Econometrics
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
- Thema
-
Selection
Heterogeneity
Heteroskedasticity
Exclusion Restrictions
Identification
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Honoré, Bo E.
Hu, Luojia
- Ereignis
-
Veröffentlichung
- (wer)
-
Federal Reserve Bank of Chicago
- (wo)
-
Chicago, IL
- (wann)
-
2022
- DOI
-
doi:10.21033/wp-2022-33
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Honoré, Bo E.
- Hu, Luojia
- Federal Reserve Bank of Chicago
Entstanden
- 2022