Arbeitspapier

Sample selection models without exclusion restrictions: Parameter heterogeneity and partial identification

This paper studies semiparametric versions of the classical sample selection model (Heckman (1976, 1979)) without exclusion restrictions. We extend the analysis in Honor'e and Hu (2020) by allowing for parameter heterogeneity and derive implications of this model. We also consider models that allow for heteroskedasticity and briefly discuss other extensions. The key ideas are illustrated in a simple wage regression for females. We find that the derived implications of a semiparametric version of Heckman's classical sample selection model are consistent with the data for women with no college education, but strongly rejected for women with a college degree or more.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. WP 2022-33

Klassifikation
Wirtschaft
Econometrics
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
Thema
Selection
Heterogeneity
Heteroskedasticity
Exclusion Restrictions
Identification

Ereignis
Geistige Schöpfung
(wer)
Honoré, Bo E.
Hu, Luojia
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of Chicago
(wo)
Chicago, IL
(wann)
2022

DOI
doi:10.21033/wp-2022-33
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Honoré, Bo E.
  • Hu, Luojia
  • Federal Reserve Bank of Chicago

Entstanden

  • 2022

Ähnliche Objekte (12)