Arbeitspapier

Sample selection models without exclusion restrictions: Parameter heterogeneity and partial identification

This paper studies semiparametric versions of the classical sample selection model (Heckman (1976, 1979)) without exclusion restrictions. We extend the analysis in Honor'e and Hu (2020) by allowing for parameter heterogeneity and derive implications of this model. We also consider models that allow for heteroskedasticity and briefly discuss other extensions. The key ideas are illustrated in a simple wage regression for females. We find that the derived implications of a semiparametric version of Heckman's classical sample selection model are consistent with the data for women with no college education, but strongly rejected for women with a college degree or more.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. WP 2022-33

Classification
Wirtschaft
Econometrics
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
Subject
Selection
Heterogeneity
Heteroskedasticity
Exclusion Restrictions
Identification

Event
Geistige Schöpfung
(who)
Honoré, Bo E.
Hu, Luojia
Event
Veröffentlichung
(who)
Federal Reserve Bank of Chicago
(where)
Chicago, IL
(when)
2022

DOI
doi:10.21033/wp-2022-33
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Honoré, Bo E.
  • Hu, Luojia
  • Federal Reserve Bank of Chicago

Time of origin

  • 2022

Other Objects (12)