Artikel

Jump factor models in large cross-sections

We develop tests for deciding whether a large cross-section of asset prices obey an exact factor structure at the times of factor jumps. Such jump dependence is implied by standard linear factor models. Our inference is based on a panel of asset returns with asymptotically increasing cross-sectional dimension and sampling frequency, and essentially no restriction on the relative magnitude of these two dimensions of the panel. The test is formed from the high-frequency returns at the times when the risk factors are detected to have a jump. The test statistic is a cross-sectional average of a measure of discrepancy in the estimated jump factor loadings of the assets at consecutive jump times. Under the null hypothesis, the discrepancy in the factor loadings is due to a measurement error, which shrinks with the increase of the sampling frequency, while under an alternative of a noisy jump factor model this discrepancy contains also nonvanishing firm-specific shocks. The limit behavior of the test under the null hypothesis is nonstandard and reflects the strong-dependence in the cross-section of returns as well as their heteroskedasticity which is left unspecified. We further develop estimators for assessing the magnitude of firm-specific risk in asset prices at the factor jump events. Empirical application to S&P 100 stocks provides evidence for exact one-factor structure at times of big market-wide jump events.

Sprache
Englisch

Erschienen in
Journal: Quantitative Economics ; ISSN: 1759-7331 ; Volume: 10 ; Year: 2019 ; Issue: 2 ; Pages: 419-456 ; New Haven, CT: The Econometric Society

Klassifikation
Wirtschaft
Model Construction and Estimation
Model Evaluation, Validation, and Selection
Asset Pricing; Trading Volume; Bond Interest Rates
Thema
Factor model
panel
high-frequency data
jumps
semimartingale,specification test
stochastic volatility

Ereignis
Geistige Schöpfung
(wer)
Li, Jia
Todorov, Viktor
Tauchen, George Eugene
Ereignis
Veröffentlichung
(wer)
The Econometric Society
(wo)
New Haven, CT
(wann)
2019

DOI
doi:10.3982/QE1060
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Li, Jia
  • Todorov, Viktor
  • Tauchen, George Eugene
  • The Econometric Society

Entstanden

  • 2019

Ähnliche Objekte (12)