Artikel

Intelligent User Assistance for Automated Data Mining Method Selection

In any data science and analytics project, the task of mapping a domain-specific problem to an adequate set of data mining methods by experts of the field is a crucial step. However, these experts are not always available and data mining novices may be required to perform the task. While there are several research efforts for automated method selection as a means of support, only a few approaches consider the particularities of problems expressed in the natural and domain-specific language of the novice. The study proposes the design of an intelligent assistance system that takes problem descriptions articulated in natural language as an input and offers advice regarding the most suitable class of data mining methods. Following a design science research approach, the paper (i) outlines the problem setting with an exemplary scenario from industrial practice, (ii) derives design requirements, (iii) develops design principles and proposes design features, (iv) develops and implements the IT artifact using several methods such as embeddings, keyword extractions, topic models, and text classifiers, (v) demonstrates and evaluates the implemented prototype based on different classification pipelines, and (vi) discusses the results’ practical and theoretical contributions. The best performing classification pipelines show high accuracies when applied to validation data and are capable of creating a suitable mapping that exceeds the performance of joint novice assessments and simpler means of text mining. The research provides a promising foundation for further enhancements, either as a stand-alone intelligent assistance system or as an add-on to already existing data science and analytics platforms.

Sprache
Englisch

Erschienen in
Journal: Business & Information Systems Engineering ; ISSN: 1867-0202 ; Volume: 62 ; Year: 2020 ; Issue: 3 ; Pages: 227-247 ; Wiesbaden: Springer Fachmedien Wiesbaden

Klassifikation
Allgemeines, Wissenschaft
Thema
Intelligent user assistance system
Automated method selection
Data science
Natural language processing
Design science research

Ereignis
Geistige Schöpfung
(wer)
Zschech, Patrick
Horn, Richard
Höschele, Daniel
Janiesch, Christian
Heinrich, Kai
Ereignis
Veröffentlichung
(wer)
Springer Fachmedien Wiesbaden
(wo)
Wiesbaden
(wann)
2020

DOI
doi:10.1007/s12599-020-00642-3
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Zschech, Patrick
  • Horn, Richard
  • Höschele, Daniel
  • Janiesch, Christian
  • Heinrich, Kai
  • Springer Fachmedien Wiesbaden

Entstanden

  • 2020

Ähnliche Objekte (12)