Artikel

GJR-GARCH volatility modeling under NIG and ANN for predicting top cryptocurrencies

Cryptocurrencies are currently traded worldwide, with hundreds of different currencies in existence and even more on the way. This study implements some statistical and machine learning approaches for cryptocurrency investments. First, we implement GJR-GARCH over the GARCH model to estimate the volatility of ten popular cryptocurrencies based on market capitalization: Bitcoin, Bitcoin Cash, Bitcoin SV, Chainlink, EOS, Ethereum, Litecoin, TETHER, Tezos, and XRP. Then, we use Monte Carlo simulations to generate the conditional variance of the cryptocurrencies using the GJR-GARCH model, and calculate the value at risk (VaR) of the simulations. We also estimate the tail-risk using VaR backtesting. Finally, we use an artificial neural network (ANN) for predicting the prices of the ten cryptocurrencies. The graphical analysis and mean square errors (MSEs) from the ANN models confirmed that the predicted prices are close to the market prices. For some cryptocurrencies, the ANN models perform better than traditional ARIMA models.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 14 ; Year: 2021 ; Issue: 9 ; Pages: 1-22 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
Monte Carlo simulation
cryptocurrency
GJR-GARCH
NIG
artificial neural network
value at risk backtesting

Ereignis
Geistige Schöpfung
(wer)
Mostafa, Fahad
Saha, Pritam
Islam, Mohammad Rafiqul
Nguyen, Nguyet
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2021

DOI
doi:10.3390/jrfm14090421
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Mostafa, Fahad
  • Saha, Pritam
  • Islam, Mohammad Rafiqul
  • Nguyen, Nguyet
  • MDPI

Entstanden

  • 2021

Ähnliche Objekte (12)