Survival analysis using deep learning with medical imaging

Abstract: There is widespread interest in using deep learning to build prediction models for medical imaging data. These deep learning methods capture the local structure of the image and require no manual feature extraction. Despite the importance of modeling survival in the context of medical data analysis, research on deep learning methods for modeling the relationship of imaging and time-to-event data is still under-developed. We provide an overview of deep learning methods for time-to-event outcomes and compare several deep learning methods to Cox model based methods through the analysis of a histology dataset of gliomas.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Survival analysis using deep learning with medical imaging ; volume:20 ; number:1 ; year:2023 ; pages:1-12 ; extent:12
The international journal of biostatistics ; 20, Heft 1 (2023), 1-12 (gesamt 12)

Creator
Morrison, Samantha
Gatsonis, Constantine
Eloyan, Ani
Steingrimsson, Jon Arni

DOI
10.1515/ijb-2022-0113
URN
urn:nbn:de:101:1-2405311733071.535117417156
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:48 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Morrison, Samantha
  • Gatsonis, Constantine
  • Eloyan, Ani
  • Steingrimsson, Jon Arni

Other Objects (12)